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_ o _ 5 Fig. 1 - Differences in YPA and Completion % between model-agreeing throws and other receivers. Some QBs perform
e Like similar approaches IN SOCcer,” we model better when aligned with the model, indicating potential opportunities to optimize by favoring expected targets

receiver targeting as a learning-to-rank(LTR)
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e This work builds an XGBoost learning-to-rank model with

handcrafted features to predict the likely target of a typical

quarterback

o We can then contextualize individual QB decisions by
comparing them to model-predicted choices.

By analyzing YPA and completion rate by model
agreement, we can highlight QBs who succeed with
unconventional pass options or might benefit from more
conventional throws

However, quarterbacks will encounter different game

states, so some may have more opportunities to make

more typical throws

o To better evaluate QB decisions, future work should
estimate yards and completion probability for receivers
to find the optimal decision

Additionally, future work includes pre-snap factors
(coverage mismatches, motions, receiver skill) to update
target probabilities from the snap to the pass
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The QB Movement Vector is Key to Deciding Throwing Target

Speed Vector Difference with 2nd Closest Defender

e After random search tuning and 5-fold cross-validation,
with folding along games, the model yields 59.9%
top-1 accuracy, significantly outperforming both a naive
guess (20%) and a separation-based heuristic (31 .6%) Fig. 3 - Variable Importance for the XGBoost Model, determining the expected throw target
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